深度神经网络在计算机视觉中的许多任务中设定了最先进的,但它们的概括对象扭曲的能力令人惊讶地是脆弱的。相比之下,哺乳动物视觉系统对广泛的扰动是强大的。最近的工作表明,这种泛化能力可以通过在整个视觉皮层中的视觉刺激的表示中编码的有用的电感偏差来解释。在这里,我们成功利用了多任务学习方法的这些归纳偏差:我们共同训练了深度网络以进行图像分类并预测猕猴初级视觉皮层(V1)中的神经活动。我们通过测试其对图像扭曲的鲁棒性来衡量我们网络的分发广泛性能力。我们发现,尽管在训练期间没有这些扭曲,但猴子V1数据的共同训练导致鲁棒性增加。此外,我们表明,我们的网络的鲁棒性非常接近Oracle网络的稳定性,其中架构的部分在嘈杂的图像上直接培训。我们的结果还表明,随着鲁布利的改善,网络的表示变得更加大脑。使用新颖的约束重建分析,我们调查了我们的大脑正规网络更加强大的原因。与我们仅对图像分类接受培训的基线网络相比,我们的共同训练网络对内容比噪声更敏感。使用深度预测的显着性图,用于想象成像图像,我们发现我们的猴子共同训练的网络对场景中的突出区域倾向更敏感,让人想起V1在对象边界的检测中的作用和自下而上的角色显着性。总体而言,我们的工作扩大了从大脑转移归纳偏见的有前途的研究途径,并为我们转移的影响提供了新的分析。
translated by 谷歌翻译
本文从凸优化的角度研究了已知和未知环境中的随机最短路径(SSP)问题。它首先回忆起已知参数案例的结果,并通过不同的证据发展理解。然后,它着重于未知的参数情况,其中它研究了扩展价值迭代(EVI)运算符。这包括Rosenberg等人中使用的现有操作员。 [26]和Tarbouriech等。 [31]基于L-1规范和至上规范,以及定义与其他规范和差异相对应的EVI操作员,例如KL-Divergence。本文总的来说,EVI操作员如何与凸面程序及其双重形式相关联,这些形式表现出强烈的双重性。然后,本文重点介绍了NEU和Pike-Burke [21]的有限视野研究的界限是否可以应用于SSP设置中的这些扩展价值迭代操作员。它表明存在与[21]的相似界限,但是它们会导致不在一般单调且具有更复杂收敛属性的运算符。在特殊情况下,我们观察到振荡行为。本文通过几个需要进一步检查的示例,就研究的进展产生了公开问题。
translated by 谷歌翻译
高能密度物理学的模拟很昂贵,部分原因是需要产生非本地热力学平衡的不透明性。高保真光谱可能会揭示出在没有低保真光谱的模拟中的新物理学,但是这些模拟的成本也随着所使用的不透明性的保真度的水平而扩展。神经网络能够再现这些光谱,但是神经网络需要数据来训练它们,从而限制了训练数据的忠诚度。本文表明,可以在3 \%至4 \%的领域中使用中位数错误的高保真光谱,使用少于50个高保真k的k k k k数据,通过对许多对许多人进行的神经网络进行转移学习,以对许多人进行培训次数更多的低保真数据。
translated by 谷歌翻译